Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina.

نویسندگان

  • Kristin Dauner
  • Carolin Möbus
  • Stephan Frings
  • Frank Möhrlen
چکیده

PURPOSE In the vertebrate retina, calcium-activated chloride channels are expressed in photoreceptor synaptic terminals. These channels are involved in the control of transmitter release in the dark. The search for their molecular identity has recently lead to the localization of the protein anoctamin 2 (also TMEM16B) in the outer plexiform layer of the rodent retina. Since both rod and cone photoreceptors have their terminals in this layer, it was not clear which of these express anoctamin 2. Here, we examine rod spherules and cone pedicles for expression of anoctamin 2. METHODS Expression of anoctamin genes was studied in the rat eye using RT-PCR. Immunohistochemical experiments were used to localize anoctamins and chloride transporters with their regulatory kinases. Photoreceptor synaptic proteins, as well as the lectins Peanut agglutinin and Griffonia simplicifolia agglutinin, were used to distinguish retinal structures. RESULTS Anoctamin 1, 2, and 10 were found to be expressed in the eye. Anoctamin 2 was expressed as a splice variant that includes exon 15 of the genomic structure. The protein is exclusively expressed in rod terminals and is not present in cone pedicles. Expression is not clustered at the ribbon complex, but spread across the presynaptic membrane where it colocalizes with the plasma membrane calcium pump. The electroneutral chloride transporter NKCC1 is expressed in photoreceptor terminals, together with its regulatory kinases SPAK and OSR1. CONCLUSIONS Rod photoreceptor terminals possess the molecular machinery for chloride accumulation and for the generation of calcium-dependent chloride currents conducted through anoctamin 2 channels. We discuss this finding in the framework of the established hypothesis that calcium-activated chloride channels are part of a feedback inhibition mechanism that limits transmitter release in the dark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina

Calcium (Ca(2+))-activated chloride (Cl(-)) channels (CaCCs) play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca(2+)-activated Cl(-) currents (ICl(Ca)) regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca) remains unclear....

متن کامل

Calcium extrusion from mammalian photoreceptor terminals.

Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and...

متن کامل

TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationsh...

متن کامل

Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts o...

متن کامل

Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2

Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 2013